Abstract

This paper introduces, as a proof of concept, a tool chain for automated control and simulation of a robot team in the domain of production of carbon-fiber-reinforced polymers. The starting point is a CAD construction of a simple aviation component from which single cut pieces of carbon fiber, together withtheir properties, are extracted. Using this information and the layout of a given robot cell, various possibilities of assignments of cut pieces to grippers and robots or robot teams are determined. Subsequently, two approaches using an PDDL solver are introduced, with the goal of finding a scheduling for the lay-up process. Finally, the resulting process is simulated using a physics and rendering engine. The main purpose of this paper is to show the feasibility of such an approach; we do not concentrate on the optimization of single process steps and other details. Due to the modular structure of our approach, extensions and optimizations of the single blocks are easy to integrate. At the moment, digitization and automated control are little explored areas in the domain of production technology using pick and place processes in the aerospace industry. We think that our work will lead to further research in this direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.