Abstract

The complexity of tissue and the alterations that distinguish normal from cancer remain a challenge for translating results from tumor biological studies into clinical medicine. This has generated an unmet need to exploit the findings from studies based on cell lines and model organisms to develop, validate and clinically apply novel diagnostic, prognostic and treatment predictive markers. As one step to meet this challenge, the Human Protein Atlas project has been set up to produce antibodies towards human protein targets corresponding to all human protein coding genes and to map protein expression in normal human tissues, cancer and cells. Here, we present a dictionary based on microscopy images created as an amendment to the Human Protein Atlas. The aim of the dictionary is to facilitate the interpretation and use of the image-based data available in the Human Protein Atlas, but also to serve as a tool for training and understanding tissue histology, pathology and cell biology. The dictionary contains three main parts, normal tissues, cancer tissues and cells, and is based on high-resolution images at different magnifications of full tissue sections stained with H & E. The cell atlas is centered on immunofluorescence and confocal microscopy images, using different color channels to highlight the organelle structure of a cell. Here, we explain how this dictionary can be used as a tool to aid clinicians and scientists in understanding the use of tissue histology and cancer pathology in diagnostics and biomarker studies.

Highlights

  • The Human Protein Atlas project, launched in 2003, was initiated as a natural extension of the Human Genome Project, with the objective to explore the proteins encoded by the human genome

  • One main goal in this effort was to contribute to biomedical and clinical research, and because cancer is a major disease where diagnostics, classification and prognostic stratification is based on tissue morphology, a multitude of clinical cancer tissue samples were included in the comprehensive protein profiling

  • Concluding remarks Here we present a freely available cell and tissue dictionary as an amendment to the Human Protein Atlas that can be used to facilitate the interpretation of clinical tissue biomarkers

Read more

Summary

Introduction

The Human Protein Atlas project, launched in 2003, was initiated as a natural extension of the Human Genome Project, with the objective to explore the proteins encoded by the human genome. One main goal in this effort was to contribute to biomedical and clinical research, and because cancer is a major disease where diagnostics, classification and prognostic stratification is based on tissue morphology, a multitude of clinical cancer tissue samples were included in the comprehensive protein profiling. This has allowed researchers to utilize the protein profiling data for both biomarker discovery efforts and for validation of altered gene expression patterns at the protein level in both normal and cancer tissue. This corresponds to more than 70% of all human protein encoding genes [5]

Objectives
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.