Abstract
Modern computer vision methods typically require expensive data acquisition and accurate manual labeling. In this work, we instead leverage the recent progress in computer graphics to propose a novel approach of designing and generating large scale multi-purpose image data sets from 3D object models directly, captured from multiple categorized camera viewpoints and controlled environmental conditions. The set of rendered images provide data for geometric computer vision problems such as depth estimation, camera pose estimation, 3D box estimation, 3D reconstruction, camera calibration, and also pixel-perfect ground truth for scene understanding problems, such as: semantic and instance segmentation, object detection, just to cite a few. In this paper, we also survey the most well-known synthetic data sets used in computer vision tasks, pointing out the relevance of rendering images for training deep neural networks. When compared to similar tools, our generator contains a wide set of features easy to extend, besides allowing for building sets of images in the MSCOCO format, so ready for deep learning works. To the best of our knowledge, the proposed tool is the first one to generate large-scale, multi-pose, synthetic data sets automatically, allowing for training and evaluation of supervised methods for all of the covered features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.