Abstract

The problem of computing the internal electromagnetic field of a homogeneous sphere from the observation of its scattered light field is explored. Using empirical observations it shown that, to good approximation for low contrast objects, there is a simple Fourier relationship between a component of the internal E-field and the scattered light in a preferred plane. Based on this relationship an empirical algorithm is proposed to construct a spherically symmetric particle of approximately the same diameter as the original, homogeneous, one. The size parameter (ka) of this particle is then estimated and shown to be nearly identical to that of the original particle. The size parameter can then be combined with the integrated power of the scatter in the preferred plane to estimate refractive index. The estimated values are shown to be accurate in the presence of moderate noise for a class of size parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.