Abstract

Code division multiple access (CDMA) ad hoc networks have been considered a promising multiple-channel networking architecture for connecting tactical platforms in battle fields. In this paper we consider a network of a swarm of unmanned aerial vehicles (UAVs) that are used in a tactical surveillance mission. The UAVs are assumed to have multiuser detection capability and form a CDMA-based ad hoc network. A token circulation scheme is proposed to conduct functions required at the medium access control layer including detection of hidden/lost neighbors, code assignment and schedule-based cooperative transmission scheduling. In the proposed scheme, a token continuously circulates around the network based on the "receive-forward" module. Through circulation of the token, each UAV can detect its hidden and/or lost neighbors in near real-time, assign codes enabling the spatial reuse of code channels without incurring code collision, and schedule data transmissions in a cooperative and distributed manner. In addition, the proposed scheme is able to take advantage of multiuser detection functionality and allows for simultaneous transmissions from multiple transmitters to a same receiver. The performance of the proposed token circulation scheme is evaluated, both analytically and through simulations. It is shown that the latency of the token is at most linearly proportional to the network size, and the average delay of a data packet increases with either the packet generation rate or the network size. The results also show that the proposed token circulation scheme is suitable for large-scale CDMA-based UAV ad hoc networks with even heavy network traffic load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call