Abstract
An additional open reading frame from the chloramphenicol acetyltransferase (CAT) gene was fused behind a tobacco mosaic virus (TMV) subgenomic RNA promoter and inserted into different positions in the complete TMV genome to examine how much this viral genome can be altered with continued replication. One hybrid virus, CAT-CP, with the insertion between the 30K and coat protein genes, replicated efficiently, produced an additional subgenomic RNA and CAT activity, and assembled into 350-nm virions, compared to 300-nm virions of wild-type TMV. However, during systemic infection of plants, the inserted sequences were deleted. This deletion was exact, resulting in progeny wild-type TMV. Another hybrid virus examined was CP-CAT, which had the insertion between the coat protein gene and the nontranslated 3′ region. This virus replicated poorly, produced only minimal levels of CAT activity, and did not systemically invade infected plants. These data show that some extensive modifications of the TMV genome still allow efficient virus replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.