Abstract

Molecular dynamics simulations have been performed to characterize the conformation of DNA that is present when DNA links gold nanoparticles to form nanoparticle superlattice crystals. To model the DNA-linked gold nanoparticles, four strands of DNA are used to connect two gold surfaces, with a small interstrand separation and high added salt to match experiment. A-form DNA was assumed for the initial conformation, as this form of DNA has a length per base-pair that matches lengths that have been inferred from X-ray measurements. The DNA structure was monitored for 40 ns, and the distributions of the slide and z(p) coordinates were obtained from the simulations. We find that all the double-stranded DNA (ds-DNA) strands transform from A- to B-DNA during the simulations. In addition, single-stranded DNAa (ss-DNAs) that are used to connect the ds-DNA to each surface are found to become adsorbed on the gold surfaces during this process, and the ds-DNAs bend (∼143°) at their junctions with the two gold surfaces to accommodate the observed distance between gold surfaces using B-form DNA. We infer from this that the short length of DNA between the gold surfaces is not due to the presence of A-DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.