Abstract
Biocompatible and osteoconductive cell-scaffold constructs comprise the first and most important step towards successful in vivo bone repair. This study reports on a new cell-scaffold construct composed of gelatin-based hydrogel and ceramic (CaCO(3)/beta-TCP) particles loaded with human MSCs producing a tissue-like construct applied as a transplant for in vivo bone formation. Bone marrow-derived human MSCs were cultured in osteogenic induction medium. 5 x 10(5) (P(2)) cells were loaded on a mixture of hydrogel microspheres and ceramic particles, cultured in a rotating dynamic culture for up to 3 weeks. Both hydrogel microspheres and ceramic particles coalesced together to form a tissue-like construct, shown by histology to contain elongated spindle-like cells forming the new tissue between the individual particles. Cell proliferation and cell viability were confirmed by Alamar blue assay and by staining with CFDA, respectively. FACS analysis conducted before loading the cells, and after formation of the construct, revealed that the profile of cell surface markers remained unchanged throughout the dynamic culture. The osteogenic potential of the cells composing the tissue-like construct was further validated by subcutaneous transplants in athymic nude mice. After 8 weeks a substantial amount of new bone formation was observed in the cell-construct transplants, whereas no bone formation was observed in transplants containing no cells. This new cell construct provides a system for in vivo bone transplants. It can be tailored for a specific size and shape as needed for various transplant sites and for all aspects of regenerative medicine and biomaterial science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Tissue Engineering and Regenerative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.