Abstract
Gel-based injectable biomaterials have significant potential for treating vocal fold defects such as scarring. An ideal injectable for vocal fold lamina propria restoration should mimic the microenvironment of the lamina propria to induce scarless wound healing and functional tissue regeneration. Most current synthetic or natural injectable biomaterials do not possess the same level of complex, tissue-specific constituents as the natural vocal fold lamina propria. In this study we present a newly-developed injectable gel fabricated from decellularized bovine vocal fold lamina propria. Blyscan assay and mass spectrometry indicated that the vocal fold-specific gel contained a large amount of sulfated glycosaminoglycans and over 250 proteins. Gene Ontology overrepresentation analysis revealed that the proteins in the gel dominantly promote antifibrotic biological process. In vivo study using a rabbit vocal fold injury model showed that the injectable gel significantly reduced collagen density and decreased tissue contraction of the lamina propria in vocal folds with chronic scarring. Furthermore, this acellular gel only elicited minimal humoral immune response after injection. Our findings suggested that the tissue-specific, injectable extracellular matrix gel could be a promising biomaterial for treating vocal fold scarring, even after the formation of mature scar. Statement of SignificanceVocal fold lamina propria scarring remains among the foremost therapeutic challenges in the management of patients with voice disorders. Surgical excision of scar may cause secondary scarring and yield inconsistent results. The present study reports an extracellular matrix-derived biomaterial that demonstrated antifibrotic effect on chronic scarring in vocal fold lamina propria. Its injectability minimizes the invasiveness of the delivery procedure and the degree of mucosal violation. In this work we also describe a new methodology which can more accurately identify proteins from the complex mixture of an acellular extracellular matrix gel by excluding interfering peptides produced during the enzymatic digestion in gel fabrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.