Abstract

We previously reported a bioabsorbable nerve conduit coated with Schwann cells for the treatment of peripheral nerve defects. Since there have been dramatic developments in induced pluripotent stem (iPS) cells in recent years, the purpose of the present study was to create a tissue-engineered nerve conduit coated with iPS cell-derived neurospheres. Such a conduit was constructed by three-dimensional (3D)-culture of these cells using a bioabsorbable polymer conduit as a scaffold. The nerve conduit was composed of a mesh of poly L-lactide, and a porous sponge of 50% poly L-lactide and 50% poly ε-caprolactone. The primary and secondary neurospheres (PNS and SNS, respectively) induced from iPS cells were suspended in individual conduits. The conduits were incubated for 7 or 14 days in vitro and then evaluated using immunohistochemistry. All of the 7- and 14-day differentiated PNS and SNS were observed to have adhered to the inner surface of the conduits and to have migrated into the inner porous sponge. The engrafted cells were positive for anti-Tuj1, -S-100 and -GFAP antibodies, indicating that their pluripotent ability to form neural or glial cells was maintained. These findings indicate the feasibility of creating nerve conduits coated with a 3D-culture of iPS cell-derived neurospheres for the treatment of peripheral nerve defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.