Abstract

Using density functional theory (DFT), we investigated the energy-storage capabilities of a two-dimensional TiSe monolayer for applications of the anode material of Li/Na/K-ion batteries. The TiSe monolayer showed high thermodynamic stability at 800 K according to ab initio molecular dynamics (AIMD) simulation. The ion-diffusion barrier was estimated to be 0.29/0.36/0.33 eV for Li/Na/K, respectively, indicating the high-rate capacity of this material. The theoretical specific capacity was 422.63 mA h g-1 for Li/Na/K, with an energy density of 1000.19, 802.30, and 802.41 mW h g-1, respectively. Fully charged TiSe was mechanically stable according to the calculated elastic constants. Our results show that the TiSe monolayer could be used as an excellent anode material for Li/Na/K-ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.