Abstract

Background and purposeTargeting and uptake are the most important strategies for enhancing the efficacy of cancer photothermal therapy (PTT) and reducing damage to surrounding normal tissues. In this study, a kind of nanophotosensitizer based on nanobubbles and TiN was prepared for synergetic therapy for hepatocellular carcinoma. MethodsThe photothermal agent titanium nitride (TiN) was wrapped in nanobubbles by membrane hydration method and verified in cells and animals. CCK-8, cell death staining, and JC-1 were used to verify the pernicious effect of photothermal combined with Ultrasound Targeted Nanobubble Destruction (UTND) and then injected into animals through the tail vein to observe its photothermal effect and in vivo inhibitory effect. A hemolysis test and body weight change verified its safety. ResultsThe average diameter of the novel nanophotosensitizer was 300.3 ± 12.7 nm, with a consistent nanospheres morphology. The UTND technology was utilized to improve the penetration of TiN into tumor cells through the physical energy of ultrasound irradiation. The therapeutic effects of the synergistic therapy of UTND and PTT were verified in vitro and in vivo. ConclusionThe research has established NBs@C3F8–TiN as a suitable ultrasound photothermal agent due to its appropriate size and efficient photothermal efficacy for visual photothermal therapy for HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call