Abstract
This paper presents a low-cost, timing uncertainty-aware synchronous clock tree topology generation algorithm for single flux quantum (SFQ) logic circuits. The proposed method considers the criticality of the data paths in terms of timing slacks as well as the total wirelength of the clock tree and generates a (height-) balanced binary clock tree using a bottom-up approach and an integer linear programming (ILP) formulation. The statistical timing analysis results for ten benchmark circuits show that the proposed method improves the total wirelength and the total negative hold slack by 4.2% and 64.6%, respectively, on average, compared with a wirelength-driven state-of-the-art balanced topology generation approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.