Abstract

This paper presents a low-cost, timing uncertainty-aware synchronous clock tree topology generation algorithm for single flux quantum (SFQ) logic circuits. The proposed method considers the criticality of the data paths in terms of timing slacks as well as the total wirelength of the clock tree and generates a (height-) balanced binary clock tree using a bottom-up approach and an integer linear programming (ILP) formulation. The statistical timing analysis results for ten benchmark circuits show that the proposed method improves the total wirelength and the total negative hold slack by 4.2% and 64.6%, respectively, on average, compared with a wirelength-driven state-of-the-art balanced topology generation approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call