Abstract

Abstract We introduce and analyze a discontinuous Petrov–Galerkin method with optimal test functions for the heat equation. The scheme is based on the backward Euler time stepping and uses an ultra-weak variational formulation at each time step. We prove the stability of the method for the field variables (the original unknown and its gradient weighted by the square root of the time step) and derive a Céa-type error estimate. For low-order approximation spaces this implies certain convergence orders when time steps are not too small in comparison with mesh sizes. Some numerical experiments are reported to support our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.