Abstract

A time-space decomposition approach is derived for numerical calculations of the transient nearfield pressure generated by a circular piston. Time-space decomposition analytically separates the temporal and spatial components of a rapidly converging single integral expression, thereby converting transient nearfield pressure calculations into the superposition of a small number of fast-converging spatial integrals that are weighted by time-dependent factors. Results indicate that, for the same peak error value, time-space decomposition is at least one or two orders of magnitude faster than the Rayleigh-Sommerfeld integral, the Schoch integral, the Field II program, and the DREAM program. Time-space decomposition is also faster than methods that directly calculate the impulse response by at least a factor of 3 for a 10% peak error and by a factor of 17 for a 1% peak error. The results show that, for a specified maximum error value, time-space decomposition is significantly faster than the impulse response and other analytical integrals evaluated for computations of transient nearfield pressures generated by circular pistons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call