Abstract

The interaction of immunoglobulin E (IgE) antibodies with the high-affinity receptor, FcεRI, plays a central role in initiating most allergic reactions. The IgE–receptor interaction has been targeted for treatment of allergic diseases, and many high-affinity macromolecular inhibitors have been identified. Small molecule inhibitors would offer significant advantages over current anti-IgE treatment, but no candidate compounds have been identified and fully validated. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR–FRET) assay for monitoring the IgE–receptor interaction. The TR–FRET assay measures an increase in fluorescence intensity as a donor lanthanide fluorophore is recruited into complexes of site-specific Alexa Fluor 488-labeled IgE-Fc and His-tagged FcεRIα proteins. The assay can readily monitor classic competitive inhibitors that bind either IgE-Fc or FcεRIα in equilibrium competition binding experiments. Furthermore, the TR–FRET assay can also be used to follow the kinetics of IgE-Fc–FcεRIα dissociation and identify inhibitory ligands that accelerate the dissociation of preformed complexes, as demonstrated for an engineered DARPin (designed ankyrin repeat protein) inhibitor. The TR–FRET assay is suitable for high-throughput screening (HTS), as shown by performing a pilot screen of the National Institutes of Health (NIH) Clinical Collection Library in a 384-well plate format.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call