Abstract
This paper describes a time-evolving digital twin and its application to a proof-of-concept engineering dynamics example. In this work, the digital twin is constructed by combining physics-based and data-based models of the physical twin, using a weighting technique. The resulting model combination enables the temporal evolution of the digital twin to be optimised based on the data recorded from the physical twin. This is achieved by creating digital twin output functions that are optimally-weighted combinations of physics- and/or data-based model components that can be updated over time to reflect the behaviour of the physical twin as accurately as possible. The engineering dynamics example is a system consisting of two cascading tanks driven by a pump. The data received by the digital twin is segmented so that the process can be carried out over relatively short time-scales. The weightings are computed based on error and robustness criteria. It is also shown how the error and robustness weights can be used to make a combined weighting. The results show how the time-varying water level in the tanks can be captured with the digital twin output functions, and a comparison is made with three different weighting choice criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.