Abstract

An explicit finite-difference scheme is presented for solving the two-dimensional Biot equations of poroelasticity across the full range of frequencies. The key difficulty is to discretize the Johnson-Koplik-Dashen (JKD) model which describes the viscous dissipations in the pores. Indeed, the time-domain version of Biot-JKD model involves order 1/2 fractional derivatives which amount to a time convolution product. To avoid storing the past values of the solution, a diffusive representation of fractional derivatives is used: The convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations. The coefficients of the diffusive representation follow from an optimization procedure of the dispersion relation. Then, various methods of scientific computing are applied: The propagative part of the equations is discretized using a fourth-order finite-difference scheme, whereas the diffusive part is solved exactly. An immersed interface method is implemented to discretize the geometry on a Cartesian grid, and also to discretize the jump conditions at interfaces. Numerical experiments are proposed in various realistic configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call