Abstract

This paper presents a time-dependent reliability estimation method for engineering system based on machine learning and simulation method. Due to the stochastic nature of the environmental loads and internal incentive, the physics of failure for mechanical system is complex, and it is challenging to include uncertainties for the physical modeling of failure in the engineered system’s life cycle. In this paper, an efficient time-dependent reliability assessment framework for mechanical system is proposed using a machine learning algorithm considering stochastic dynamic loads in the mechanical system. Firstly, stochastic external loads of mechanical system are analyzed, and the finite element model is established. Secondly, the physics of failure mode of mechanical system at a time location is analyzed, and the distribution of time realization under each load condition is calculated. Then, the distribution of fatigue life can be obtained based on high-cycle fatigue theory. To reduce the calculation cost, a machine learning algorithm is utilized for physical modeling of failure by integrating uniform design and Gaussian process regression. The probabilistic fatigue life of gear transmission system under different load conditions can be calculated, and the time-varying reliability of mechanical system is further evaluated. Finally, numerical examples and the fatigue reliability estimation of gear transmission system is presented to demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.