Abstract

A numerical model of ice sheet flow is developed, and preliminary results are described. This model includes vertical resolution of temperature, stress, and strain rate which represents a considerable improvement over previous vertically averaged ice sheet models. The model follows the flow of ice along a flow line within an ice sheet drainage basin. Longitudinal stresses and basal sliding are included. Basal sliding is dependent on the base shear stress and a specified distribution of basal water pressure. The numerical methods used to solve the coupled set of stress and velocity equations for the static and time‐evolutionary cases are discussed. A steady state profile simulating an ice stream is calculated for a particular set of input parameters, and changes in the profile are examined for different choices of parameters. Preliminary studies of response behavior are completed using a simplified ice sheet geometry with a fixed terminus or grounding line. The results of these studies illustrate ice sheet thinning in response to a lowered sea level or to a reduction in the extent of ice rises (or pinning points) within ice shelves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call