Abstract
This paper is concerned with the nonlinear oscillations and dynamic behavior of a rigid disk-rotor supported by active magnetic bearings (AMB), without gyroscopic effects. The nonlinear equations of motion are derived considering a periodically time-varying stiffness. The method of multiple scales is applied to obtain four first-order differential equations that describe the modulation of the amplitudes and the phases of the vibrations in the horizontal and vertical directions. The stability and the steady-state response of the system at a combination resonance for various parameters are studied numerically, applying the frequency response function method. It is shown that the system exhibits many typical nonlinear behaviors, including multiple-valued solutions, jump phenomenon, hardening, and softening nonlinearity. A numerical simulation using a fourth-order Runge-Kutta algorithm is carried out, where different effects of the system parameters on the nonlinear response of the rotor are reported and compared to the results from the multiple scale analysis. Results are compared to available published work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.