Abstract
This study proposes a time-varying effect model for examining group differences in trajectories of zero-inflated count outcomes. The motivating example demonstrates that this zero-inflated Poisson model allows investigators to study group differences in different aspects of substance use (e.g., the probability of abstinence and the quantity of alcohol use) simultaneously. The simulation study shows that the accuracy of estimation of trajectory functions improves as the sample size increases; the accuracy under equal group sizes is only higher when the sample size is small (100). In terms of the performance of the hypothesis testing, the type I error rates are close to their corresponding significance levels under all settings. Furthermore, the power increases as the alternative hypothesis deviates more from the null hypothesis, and the rate of this increasing trend is higher when the sample size is larger. Moreover, the hypothesis test for the group difference in the zero component tends to be less powerful than the test for the group difference in the Poisson component. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.