Abstract

In this article, we consider the nonparametric inference for the time-varying coefficient double-threshold generalized autoregressive conditional heteroscedastic models. The quasi-maximum exponential likelihood estimators (QMELEs) of the model’s parameters and the asymptotic properties of the estimators are obtained. The simulation study implies that the distribution of the estimators is asymptotically normal. A real data application to stock returns is given. Both the simulations and real data example imply that the model and the QMELE are proper, compatible and accurately fit the financial time series data of the Nikkei 225.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.