Abstract

Single Particle Tracking (SPT) is a powerful class of tools for analyzing the dynamics of individual biological macromolecules moving inside living cells. The acquired data is typically in the form of a sequence of camera images that are then post-processed to reveal details about the motion. In this work, we develop a local time-varying estimation algorithm for estimating motion model parameters from the data considering nonlinear observations. Our approach uses several well-known existing tools, namely the Expectation Maximization (EM) algorithm combined with an Unscented Kalman filter (UKF) and an Unscented Rauch-Tung-Striebel smoother (URTSS), and applies them to the time-varying case through a sliding window methodology. Due to the shot noise characteristics of the photon generation process, this model uses a Poisson distribution to capture the measurement noise inherent in imaging. In order to apply our time-varying approach to the UKF, we first need to transform the measurements into a model with additive Gaussian noise. This is carried out using a variance stabilizing transform. Results from simulations show that our approach is successful in tracing time-varying diffusion constants at a range of physically relevant signal levels. We also discuss the initialization for the EM algorithm based on the available data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call