Abstract

Abstract We analyze a numerical method to solve the time-dependent linear Pauli equation in three space dimensions. The Pauli equation is a semi-relativistic generalization of the Schrödinger equation for 2-spinors which accounts both for magnetic fields and for spin, with the latter missing in preceding numerical work on the linear magnetic Schrödinger equation. We use a four term operator splitting in time, prove stability and convergence of the method and derive error estimates as well as meshing strategies for the case of given time-independent electromagnetic potentials, thus providing a generalization of previous results for the magnetic Schrödinger equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call