Abstract

Image denoising approaches based on partial differential modeling have attracted a lot of attention in image processing due to their high performance. The nonlinear anisotropic diffusion equations, specially Perona–Malik model, are powerful tools that improve the quality of the image by removing noise while preserving details and edges. In this paper, we propose a powerful and accurate local meshless algorithm to solve the time-fractional Perona–Malik model which has an adjustable fractional derivative making the control of the diffusion process more convenient than the classical one. In order to overcome the complexities of the problem, a suitable combination of the compactly supported radial basis function method and operator splitting technique is proposed to convert a complex time-fractional partial differential equation into sparse linear algebraic systems that standard solvers can solve. The numerical results of classical and fractional models are explored in different metrics to demonstrate the proposed scheme’s effectiveness. The numerical experiments confirm that the method is suitable to denoise digital images and show that the fractional derivative increases the model’s ability to remove noise in images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.