Abstract

Following a bi-cylindrical model of geometrical dynamics, our study shows that a 6D-gravitational equation leads to geodesic description in an extended symmetrical time–space, which fits Hubble-like expansion on a microscopic scale. As a duality, the geodesic solution is mathematically equivalent to the basic Klein–Gordon–Fock equations of free massive elementary particles, in particular, the squared Dirac equations of leptons. The quantum indeterminism is proved to have originated from space–time curvatures. Interpretation of some important issues of quantum mechanical reality is carried out in comparison with the 5D space–time–matter theory. A solution of lepton mass hierarchy is proposed by extending to higher dimensional curvatures of time-like hyper-spherical surfaces than one of the cylindrical dynamical geometry. In a result, the reasonable charged lepton mass ratios have been calculated, which would be tested experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call