Abstract
The driver scheduling problem at Chinese electric multiple-unit train depots becomes more and more difficult in practice and is studied in very little research. This paper focuses on defining, modeling, and solving the depot driver scheduling problem which can determine driver size and driver schedule simultaneously. To solve this problem, we first construct a time-space network based on which we formulate the problem as a minimum-cost multi-commodity network flow problem. We then develop a Lagrangian relaxation heuristic to solve this network flow problem, where the upper bound heuristic is a two-phase method consisting of a greedy heuristic and a local search method. We conduct a computational study to test the effectiveness of our Lagrangian relaxation heuristic. The computational results also report the significance of the ratio of driver size to task size in the depot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.