Abstract

Abstract About 41% of total energy consumption in the United States of year 2014 is used for heating and air conditioning, which is about 40 quadrillion (40 × 1015) British thermal units (BTUs). Despite the fact that people have been working on fault detection and diagnosis (FDD) for heating, ventilation, and air conditioning (HVAC) systems for a long time, very few publications have focused on scalability and low cost. To address this challenge, we will propose an approach that focuses on control system data. Several machine learning algorithms are introduced for data exploration (e.g., DBSCAN, k-means) and analysis, rank-ordered weather data are used to define comparable days, a control system data focused model free approach is presented as well, and finally, fault detection is carried out by implementing anomaly algorithms (local outlier factor and isolation forest). Hidden faults were detected with a detection rate up to 90%+. The threshold parameter can be determined by selecting an acceptable true positive and false positive rate pair, which can be visualized using receiver operating characteristic (ROC) curves and is demonstrated in this article. A simulation model that is used to generate about 250 GB of data is used to evaluate the performance of various algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.