Abstract

In this paper, we consider a class of optimal control problems governed by nonlinear time-delay switched systems, in which the system parameters and switching times between different subsystems are decision variables to be optimized. We propose a new computational approach to deal with the computational difficulties caused by variable switching times. The original time-delay switched system is firstly transformed into an equivalent switched system defined on a new time horizon where the switching times are fixed, but each of the subsystems contain a variable time-delay that depends on the durations of each sub-system in the original system. By deriving the analytical form for the variable time-delay in the new time horizon, we can solve the new time-delay switched system. Then, gradient-based optimization algorithm can be applied to solve the equivalent problem efficiently. Numerical results show that this new approach is effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.