Abstract

Brucellosis is a worldwide infectious zoonotic disease, posing severe threats to human health and social-economic development. By comparing with time-consuming, low sensitive and non-quantitative conventional serological methods, herein, protein G (prG) coupled with europium nanospheres (EuNPs) (detection probe) and highly purified Brucella lipopolysaccharide (LPS) (capture antigen) were used to develop a novel time-resolved fluorescence lateral flow immunoassay (TF-LFIA) for detecting anti-Brucella IgG antibody in human plasmas. The entire testing took 15 min. With a satisfactory purity, the purified LPS weakly cross-reacted with Y. enterocolitica O9 diagnostic antibody; however, none reacted with sera from patients with other Gram-negative bacterial infections. Following coefficient of determination (R2 = 0.9961), 0.3 IU/mL was reported as the limit of detection (LOD), much lower than those of Serological Agglutination Test (SAT), Rose-Bengal Plate Agglutination Test (RBPT) and colloidal gold LFIA (CG-LFIA). Intra-day and inter-day precisions (CV, coefficient variation) of TF-LFIA varied less than 8% or 12 %, while intra-day and inter-day accuracies were 94–106 % or 93–107 %, respectively. The correlation coefficient (R2) of TF-LFIA measurement to the different concentrations of spiked Brucella antibody was 0.9967, suggesting TF-LFIA had high reliability and reproducibility. TF-LFIA was demonstrated for 100 % specificity, 98.57 % sensitivity and 99.63 % accuracy in detection of Brucella antibody from clinical samples, respectively, significantly higher compared to SAT and RBPT. In conclusion, the established TF-LFIA is a simple, rapid and quantitative immunoassay for early diagnosis or epidemiological surveillance of Brucella infection in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call