Abstract

In the community of computational fluid dynamics, pressure Poisson equation with Neumann boundary condition is usually encountered when solving the incompressible Navier–Stokes equations in a segregated approach such as SIMPLE, PISO, and projection methods. To deal with Neumann boundary conditions more naturally and to retain high order spatial accuracy as well, a sixth-order accurate combined compact difference scheme developed on staggered grids (NSCCD6) is adopted to solve the parabolic and elliptic equations subject to Neumann boundary conditions. The staggered grid system is usually used when solving the incompressible Navier–Stokes equations. By adopting the combined compact difference concept, there is no need to discretize Neumann boundary conditions with one-sided discretization scheme which is of lower accuracy order. The conventional Crank–Nicolson scheme is applied in this study for temporal discretization. For two-dimensional cases, D’yakonov alternating direction implicit scheme is adopted. A newly proposed time step changing strategy is adopted to improve convergence rate when solving the steady state solutions of the parabolic equation. High accuracy order of the currently proposed NSCCD6 scheme for one- and two-dimensional cases are shown in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.