Abstract
Massive growth in the big data makes difficult to analyse and retrieve the useful information from the set of available data’s. Statistical analysis: Existing approaches cannot guarantee an efficient retrieval of data from the database. In the existing work stratified sampling is used to partition the tables in terms of static variables. However k means clustering algorithm cannot guarantees an efficient retrieval where the choosing centroid in the large volume of data would be difficult. And less knowledge about the static variable might leads to the less efficient partitioning of tables. Findings: This problem is overcome in the proposed methodology by introducing the FCM clustering instead of k means clustering which can cluster the large volume of data which are similar in nature. Stratification problem is overcome by introducing the post stratification approach which will leads to efficient selection of static variable. Improvements: This methodology leads to an efficient retrieval process in terms of user query within less time and more accuracy.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.