Abstract

With the rapid development of the information technologies in the financial field, extracting meaningful information from a massive amount of data is hugely significant for efficient business decision making. The recommendation system is an intelligent system that applies historical knowledge of users to infer their preferences and make a personalized recommendation. However, it suffers from the problem of time effect of user’s behaviour, which means a user’s interests may change over time. To overcome this problem, we propose a time effect based collaborative filtering approach to adaptively statistics the change of user preferences. Firstly, Item-based collaborative filtering is used to calculate rating similarity between items. Since an Item-based collaborative filtering algorithm doesn’t consider the time effect; next, the time decay function is proposed to statistics the change of user interests. Experimental results show that the proposed scheme retained higher accuracy compare to traditional collaborative filtering method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.