Abstract

A marching-on-in-degree (MOD)-based scheme for analyzing transient electromagnetic scattering from three-dimensional dispersive dielectric objects is proposed. A time-domain volume integral equation (TDVIE) for the electric flux density throughout the object is first formulated and then solved using the MOD scheme. With the use of weighted Laguerre polynomials as entire-domain temporal basis functions, the convolution of the electric flux density and the medium susceptibility and its derivatives can be handled analytically. By employing the Galerkin temporal testing procedure, the time variable is eliminated in the resultant recursive matrix equation so that the proposed algorithm overcomes the late-time instability problem that may occur in the conventional marching-on-in-time (MOT) approach. Some complex dispersive media, such as the Debye, Lorentz, and Drude media, are simulated to illustrate the validity of the TDVIE-MOD algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call