Abstract

This paper is focused on the development of a numerical procedure for solving the system identification problem of linear dynamical models that mathematically describe multibody mechanical systems. To this end, an input–output representation of the time evolution of a general mechanical system based on a sequence of matrices referred to as Markov parameters is employed. The set of Markov parameters incorporate the state-space matrices that allow for describing the dynamic behavior of a general mechanical system considering the assumption of structural linearity. The system Markov parameters are defined by means of a discretization process applied to the analytical description of a mechanical system, and therefore, they are difficult to obtain directly from observable measurements. However, a state observer can be introduced in order to define a set of observer Markov parameters that can be readily recovered from input–output experimental data. The observer Markov parameters obtained by using a least-square approach allow for computing in a recursive manner the system Markov parameters as well as another discrete sequence of matrices referred to as observer gain Markov parameters. Subsequently, the system and observer gain Markov parameters identified from observable input–output data are used for constructing a sequence of generalized Hankel matrices from which a state-space model of the mechanical system of interest can be extracted. This fundamental step of the identification procedure is performed in the algorithm elaborated in this work employing a numerical procedure which relies on the use of the Moore–Penrose pseudoinverse matrix obtained by means of the singular value decomposition. In the paper, the principal analytical and numerical aspects of the proposed identification algorithm are described in detail. Furthermore, a numerical example based on a simple vehicle model is discussed in order to verify by means of numerical experiments the effectiveness of the identification procedure developed in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.