Abstract
Based on a theoretical foundation for empirical mode decomposition, which dictates the correspondence between the analytical and empirical slow-flow analyses, we develop a time-domain nonlinear system identification (NSI) technique. This NSI method is based on multiscale dynamic partitions and direct analysis of measured time series, and makes no presumptions regarding the type and strength of the system nonlinearity. Hence, the method is expected to be applicable to broad classes of applications involving time-variant/time-invariant, linear/nonlinear, and smooth/non-smooth dynamical systems. The method leads to nonparametric reduced order models of simple form; i.e., in the form of coupled or uncoupled oscillators with time-varying or time-invariant coefficients forced by nonhomogeneous terms representing nonlinear modal interactions. Key to our method is a slow/fast partition of transient dynamics which leads to the identification of the basic fast frequencies of the dynamics, and the subsequent development of slow-flow models governing the essential dynamics of the system. We provide examples of application of the NSI method by analyzing strongly nonlinear modal interactions in two dynamical systems with essentially nonlinear attachments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.