Abstract

A novel numerical model for train-track interaction is proposed in this paper to deal with wheel–rail interface dynamics in high frequency range. The complete model consists a 3D rotating flexible wheelset model, a 3D track model considering the discrete support of the rail and a non-linear, non-Hertzian model of wheel–rail contact. The wheelset and the track models are both defined using an ‘Arbitrary Lagrangian–Eulerian’ Finite Element approach in combination with modal synthesis. This allows an efficient treatment of the problem, compared to a classical Finite Element approach. The proposed model is suitable to represent train-track interaction effects in a frequency range up to 7 kHz thanks to the detailed description of wheelset and rail deformability. Wheel–rail contact forces and rail vibration under excitation produced by different types of railhead irregularity are investigated in the paper, assessing the effect of different models of wheelset and track flexibility. The results obtained show that the outputs of the model mostly relevant to the investigation of rail corrugation and rolling noise, i.e. wheel–rail contact forces and rail vibration, are highly sensitive to the wheelset and track model adopted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call