Abstract

ABSTRACT For computation of electromagnetic scattering from layered objects, the differential form of the time-domain Maxwell's equations are first cast in a conservation form and then solved using a finite-volume discretization procedure derived from proven Computational Fluid Dynamics (CFD) methods 1 . The formulation accounts for any variations in the material properties (time, space, and frequency dependent), and can handle thin resistive sheets and lossy coatings by positioning them at finite-volume cell boundaries. The time-domain approach handles both continuous wave (single frequency) and pulse (broadband frequency) incident excitation. Arbitrarily shaped objects are modeled by using a body-fitted coordinate transformation. For treatment of complex internal/external structures with many material layers, a multizone framework with ability to handle any type of zonal boundary conditions (perfectly conducting, flux through, zero flux, periodic, nonreflecting outer boundary, resistive card, and lossy ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.