Abstract

This paper presents a time-domain dynamic model, which simulates cylindrical plunge grinding processes under general grinding conditions. The model focuses on the prediction of grinding chatter boundaries and growth rates. Critical issues are considered in the model including: the distributed nonlinear force along the contact length, the geometrical interaction between the wheel and workpiece based on their surface profiles, the structure dynamics with multiple degrees of freedom for both the wheel and workpiece, the response delay due to spindle nonlinearities and other effects, and the effect of the motion perpendicular to the normal direction. A simulation program has been developed using the model to predict regenerative forces, dynamic responses, surface profiles, stability regions, and chatter growth rates. The model is validated using existing numerical and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.