Abstract
To address the problems of 5G network planning and optimization, a 5G user time delay prediction model based on the BiLSTM neural network optimized by APSO-SD is proposed. First, a channel generative model based on the ray-tracing model and the statistical channel model is constructed to obtain a large amount of time delay data, and a 5G user ray data feature model based on three-dimensional stereo mapping is proposed for input feature extraction. Then, an adaptive particle swarm optimization algorithm based on a search perturbation mechanism and differential enhancement strategy (APSO-SD) is proposed for the parameters’ optimization of BiLSTM neural networks. Finally, the APSO-SD-BiLSTM model is proposed to predict the time delay of 5G users. The experimental results show that the APSO-SD has a better convergence performance and optimization performance in benchmark function optimization compared with the other PSO algorithms, and the APSO-SD-BiLSTM model has better user time delay prediction accuracy in different scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.