Abstract

Parkinson's disease (PD) is characterized by abnormal motor symptoms and increased neuronal activity in the subthalamic nucleus (STN) as the disease progresses. We investigated the behavioral and electrophysiological characteristics in a mouse model mimicking the progressive stages of human PD (early, moderate, and advanced) by injecting 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle (MFB) at three different concentrations (2, 4, and 6μg/2μl). Significant changes in motor symptoms were demonstrated between groups in association with relative TH-positive cell loss in the substantia nigra pars compacta (SNc). Moreover, electrophysiologically assessed changes in the mean neuronal firing rate in the STN neurons were comparable to those in the early to advanced stages of human PD. Thus, the mouse model presented herein replicates the unique characteristics of each progressive stage of PD, in both motor and neurophysiological aspects, and therefore can be useful for further investigations of PD pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.