Abstract

It is shown that if a two-way probabilistic finite-state automaton (2pfa) M recognizes a nonregular language L with error probability bounded below $\frac{1}{2}$, then there is a positive constant b (depending on M) such that, for infinitely many inputs x, the expected running time of M on input x must exceed $2^{n^{b}}$ where n is the length of x. This complements a result of Freivalds showing that 2pfa’s can recognize certain nonregular languages in exponential expected time. It also establishes a time complexity gap for 2pfa’s, since any regular language can be recognized by some 2pfa in linear time. Other results give roughly exponential upper and lower bounds on the worst-case increase in the number of states when converting a polynomial-time 2pfa to an equivalent two-way nondeterministic finite-state automaton or to an equivalent one-way deterministic finite-state automaton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.