Abstract
The entropic coefficient of a lithium-ion battery cell is used to calculate the reversible heat of a battery during operation, which is a nonnegligible part of the battery thermal modeling. The contribution of this article is to propose a novel method to establish the entropic coefficient profile of a 26-Ah commercial pouch cell and compare the results with those obtained from the traditional potentiometric and calorimetric methods, and all are found to be in a good agreement. The originality of this article is to use a method, which consists of supplying a square pulse current waveform at a certain frequency, and thus, the resulting heat variation could be successfully linked to the input current using Fourier analysis. The current magnitudes used were 1 and 1.5 C, which are representative of the normal operation current in an electrified vehicle application. The method proposed is found to be cost efficient with a short experiment time and simple experiment setup. In fact, it can be used to characterize cells that are already mounted in a pack without access to a climate chamber or calorimeter.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Transportation Electrification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.