Abstract

In two papers, Little and Sellers introduced an exciting new combinatorial method for proving partition identities which is not directly bijective. Instead, they consider various sets of weighted tilings of a $$1 \times \infty $$ board with squares and dominoes, and for each type of tiling they construct a generating function in two different ways, which in turn generates a q-series identity. Using this method, they recover quite a few classical q-series identities, but Euler’s Pentagonal Number Theorem is not among them. In this paper, we introduce a key parameter when constructing the generating functions of various sets of tilings which allows us to recover Euler’s Pentagonal Number Theorem along with an uncountably infinite family of generalizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.