Abstract

In this paper, we consider a Cauchy problem of recovering both missing value and flux on inaccessible boundary from Dirichlet and Neumann data measured on the remaining accessible boundary. Associated with two mixed boundary value problems, a regularized Kohn-Vogelius formulation is proposed. With an introduction of a relaxation parameter, the Dirichlet boundary conditions are approximated by two Robin ones. Compared to the existing work, weaker regularity is required on the Dirichlet data. This makes the proposed model simpler and more efficient in computation. A series of theoretical results are established for the new reconstruction model. Several numerical examples are provided to show feasibility and effectiveness of the proposed method. For simplicity of the statements, we take Poisson equation as the governed equation. However, the proposed method can be applied directly to Cauchy problems governed by more general equations, even other linear or nonlinear inverse problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call