Abstract
Achieving rapid definitive hemostasis is essential to ensure survival of patients with massive bleeding in pre-hospital care. It is however challenging to develop hemostatic agents or dressings that simultaneously deliver a fast, long-lasting and safe treatment of hemorrhage. Here, we integrate meso-/micro-porosity, blood coagulation and stability into a flexible zeolite-cotton hybrid hemostat. We employ an on-site template-free growth route that tightly binds mesoporous single-crystal chabazite zeolite onto the surface of cotton fibers. This hemostatic material maintains high procoagulant activity after water flow treatment. Chabazite particles are firmly anchored onto the cotton surface with < 1% leaching after 10 min of sonication. The as-synthesized hemostatic device has superior hemostatic performance over most other clay or zeolite-based inorganic hemostats, in terms of higher procoagulant activity, minimized loss of active components and better scalability for practical applications (a hemostatic T-shirt is hereby demonstrated as an example).
Highlights
Achieving rapid definitive hemostasis is essential to ensure survival of patients with massive bleeding in pre-hospital care
A few types of inorganic materials, including zeolites and clays, have been developed to accelerate the coagulation of the blood without introducing any biohazardous effects[2,3,4]. These inorganic hemostats usually function through three major mechanisms: (i) absorbing water from the blood and concentrating the blood components at the hemorrhagic site; (ii) activating the blood coagulation cascade; (iii) providing a physical barrier to blood flow[2,3,4]
The Combat Gauze (Z-Medica), a clay impregnated gauze, works as a popular hemostat in the US military[3,4]. It fails to achieve rapid definitive hemostasis due to the high loss of active components and suffers from potential risks of distal thrombosis arising from wound contamination by the detached clay powder[5]
Summary
Achieving rapid definitive hemostasis is essential to ensure survival of patients with massive bleeding in pre-hospital care. The as-synthesized mCHA-C hybrid material exhibits superior hemostatic activity and outperforms the conventionally used kaolin clay impregnated gauze (Combat Gauze, CG) in terms of rapid definitive hemostasis, easy operation, and minimized side effects. From a low-magnification TEM image, it is clear that the mCHA zeolite particles have surface textures arising from the presence of mesoporosity, as observed by SEM (Supplementary Fig. 3).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.