Abstract
This work presents the implementation of a tightly-coupled hardware architectural enhancement to the Altera FPGA-based Nios II embedded processor. The goal is to accelerate finite field arithmetic operations in the binary fields of F 2 163 and F 2 193, for application in a high-performance embedded system implementing elliptic curve cryptography (ECC). The concept is to augment the embedded processor with a few custom instructions for fast finite field arithmetic operations. Instead of a coprocessor, hardware acceleration of the arithmetic operation is provided by custom logic tightly coupled to the processor core and directly controlled by the instruction stream. This concept, which may be considered as a hardware-software co-design approach, is evaluated by prototyping an elliptic curve cryptosystem (ECC) on an Altera Stratix FPGA development board. Experimental results shows that for the point multiplication operation, which is the core operation in an ECC computation, the implementation with custom instructions and tightly-coupled hardware is about 50% faster than the coprocessor-based hardware.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information and Communication Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.