Abstract

Let $W_t$ denote the wheel on $t+1$ vertices. We prove that for every integer $t \geq 3$ there is a constant $c=c(t)$ such that for every integer $k\geq 1$ and every graph $G$, either $G$ has $k$ vertex-disjoint subgraphs each containing $W_t$ as minor, or there is a subset $X$ of at most $c k \log k$ vertices such that $G-X$ has no $W_t$ minor. This is best possible, up to the value of $c$. We conjecture that the result remains true more generally if we replace $W_t$ with any fixed planar graph $H$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.