Abstract

The efficient separation of photogenerated charge carriers and strong oxidizing properties can improve photocatalytic performance. Here, we combine the construction of a tightly connected S-scheme heterojunction with the exposure of an active crystal plane to prepare g-C3N4/BiOBr for the degradation of high-concentration organic pollutants. This strategy effectively improves the separation efficiency of photogenerated carriers and the number of active sites. Notably, the synthesized g-C3N4/BiOBr displays excellent photocatalytic degradation activity towards various organic pollutants, including methylene blue (MB, 90.8%), congo red (CR, 99.2%), and tetracycline (TC, 89%). Furthermore, the photocatalytic degradation performance of g-C3N4/BiOBr for MB maintains 80% efficiency under natural water quality (tap water, lake water, river water), and a wide pH range (pH = 4-10). Its excellent photocatalytic activity is attributed to the tight connection between g-C3N4 and BiOBr in the S-scheme heterojunction interface, as well as the exposure of highly active (001) crystal planes. These improve the efficiency of the separation of photogenerated carriers, and maintain their strong oxidation capability. This work presents a simple approach to improving the separation of electrons and holes by tightly combining two components within a heterojunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call